The Higher-Order Recursive Path Ordering
نویسندگان
چکیده
This paper extends the termination proof techniques based on reduction orderings to a higher-order setting, by adapting the recursive path ordering definition to terms of a typed lambda-calculus generated by a signature of polymorphic higher-order function symbols. The obtained ordering is well-founded, compatible with -reductions and with polymorphic typing, monotonic with respect to the function symbols, and stable under substitution. It can therefore be used to prove the strong normalization property of higher-order calculi in which constants can be defined by higher-order rewrite rules. For example, the polymorphic version of Gödel’s recursor for the natural numbers is easily oriented. And indeed, our ordering is polymorphic, in the sense that a single comparison allows to prove the termination property of all monomorphic instances of a polymorphic rewrite rule. Several other non-trivial examples are given which examplify the expressive power of the ordering.
منابع مشابه
(HO)RPO Revisited
The notion of computability closure has been introduced for proving the termination of the combination of higher-order rewriting and beta-reduction. It is also used for strengthening the higher-order recursive path ordering. In the present paper, we study in more details the relations between the computability closure and the (higher-order) recursive path ordering. We show that the first-order ...
متن کاملA Termination Ordering for Higher Order Rewrite System
We present an extension of the recursive path ordering for the purpose of showing termination of higher order rewrite systems. Keeping close to the general path ordering of Dershowitz and Hoot, we demonstrate the necessary properties of the termination functions for our method to apply, thus describe a class of diierent orderings. We also give a counterexample to a previously published extensio...
متن کاملA Termination Ordering for Higher Order Rewrite Systems
We present an extension of the recursive path ordering for the purpose of showing termination of higher order rewrite systems. Keeping close to the general path ordering of Dershowitz and Hoot, we demonstrate su cient properties of the termination functions for our method to apply. Thereby we describe a class of di erent orderings. Finally we compare our method to previously published extension...
متن کاملCertified Higher-Order Recursive Path Ordering
Recursive path ordering (RPO) is a well-known reduction ordering introduced by Dershowitz [6], that is useful for proving termination of term rewriting systems (TRSs). Jouannaud and Rubio generalized this ordering to the higher-order case thus creating the higher-order recursive path ordering (HORPO) [8]. They proved that this ordering can be used for proving termination of higher-order TRSs wh...
متن کاملA Higher-Order Iterative Path Ordering
The higher-order recursive path ordering (HORPO) defined by Jouannaud and Rubio provides a method to prove termination of higher-order rewriting. We present an iterative version of HORPO by means of an auxiliary term rewriting system, following an approach originally due to Bergstra and Klop. We study well-foundedness of the iterative definition, discuss its relationship with the original HORPO...
متن کاملThe Computability Path Ordering: The End of a Quest
In this paper, we first briefly survey automated termination proof methods for higher-order calculi. We then concentrate on the higher-order recursive path ordering, for which we provide an improved definition, the Computability Path Ordering. This new definition appears indeed to capture the essence of computability arguments à la Tait and Girard, therefore explaining the name of the improved ...
متن کامل